KENDRIYA VIDYALAYA VIJAYAPURA

SAMPLE PAPER FOR HALF YEARLY EXAM (2019-20)

SUBJECT:MATHEMATICS CLASS:IX

- (i). All questions are compulsory.
- (ii). This question paper contains 40 questions divided into four Sections A, B, C and D.
- (iii). Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each and Section D comprises of 6 questions of 4 markseach.
- (iv). There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each, two questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the alternatives in all suchquestions.
- Use of Calculators is notpermitted (v).

<u>SECTION – A</u> Questions 1 to 20 carry 1 mark each.

- Three angles of aquadrilateral are 75° , 90° and 75° . The fourth angle is 1. $(a)90^{0}$ $(b)95^{\circ}$ $(c)105^{0}$ $(d)120^{0}$
- 2. In a triangle ABC, if $\angle A + \angle B = 65^{\circ}$ and $\angle B + \angle C = 140^{\circ}$, then the measure of $\angle B$ is (a)40° (b)25° (c)115° (d)60° $(a)40^{0}$
- 3. Two lines PQ and RS intersect at O. If $\angle POR = 50^{\circ}$, then value of $\angle ROQ$ is $(a)120^{\circ}$ $(b)130^{\circ}$ $(c)90^{0}$ $(d)150^{\circ}$

- 4. Two adjacent angles on a straight line are in the ratio 5 : 4. then the measure of each one of these angles are (c) 90^0 and 90^0 (d) 60^0 and 120^0 (b) 75° and 105° (a) 100° and 80°
- 5. If (2, 0) is a solution of the linear equation 2x + 3y = k, then the value of k is (a)4 (b)6 (c)5 (d)2
- 6. The value of $125^{-\frac{1}{3}}$ is $(b)\frac{1}{25}$ $(a)^{\frac{1}{r}}$ $(d)\frac{1}{125}$ $(c)\frac{1}{15}$
- 7. The zero of p(x) = 9x + 4is:(a) $\frac{4}{9}$ (b) $-\frac{4}{9}$ (c) $\frac{9}{4}$ 8. If x + 2is a factor of $x^3 + 2ax^2 + ax 1$ then the value of ais
- (d) $-\frac{9}{4}$ of *a* is (d) $\frac{1}{2}$ $(b)\frac{3}{5}$ (a) $\frac{2}{2}$ $(c)\frac{3}{c}$
- 9. The coordinates of the point lying on the negative side of x-axis at a distance of 5 units from origin are (b)(0,-5)(c)(-5,0)(a)(0,5)(d)(5,0)

MAX. MARKS :80 DURATION: 3 HRS

10.	The distance of the $(4, -$	-3) from x – axisis				
	(a) 3units	(b)–3units	(c)4 units	(d) Sunits	
11.	Rationalise the denomin	nator of $\frac{1}{3-\sqrt{2}}$				
	(a) $3 + \sqrt{2}$	(b) $\frac{3+\sqrt{2}}{7}$	(c) $\frac{3-\sqrt{2}}{7}$	(d) $3 - \sqrt{2}$	
12.	The value of $(81)^{0.16} X$	(81)0.09	7			
	(a) 3	(b) 5	(c) 4	(d) 2	
13.	The value of k , if $x = 2$, (a) 3	y = 1 is a solution of the (b) 7	equation $2x +$ (c) 4	3 <i>y</i> =k.	d) 9	
14. Express $2x = 5$ yin the form $ax + by + c = 0$.						
	(a) $2x - 5y = 0$	(b) $2x + 5y = 0$ (c)	c) $2x - 5y + 6$	0 = 0 (d)2x + 5y + 0 = 0	
15. One of the angles of a triangle is 50° and the other two angles are equal. Find the measure of each of the equalangles.						
	(a) 75^0 , 75^0	(b) 70^0 , 70^0 (c)	c) $65^0, 65^0$	(d) 60^{0} , 60^{0}	
16. If $x + 6$ is a factor of $p(x) = x^3 + 3x^2 + 4x + k$, find the value of k.						
	(a) 24	(b) - 24 (c)	c) 84	(d) - 84	1"	
17. In the given figure, p q. The value of x is						
	(a) 65	(b) 75 (c	c) 55	(d) 60		
18.	18. Without actually calculating the cubes, find the value of $(-12)^3 + (7)^3 + (5)^3$.					
	(a) 420	(b) - 420 (c)	c) 320	(d) - 320		
					1	

19. Diagonals AC and BD of parallelogram ABCD intersect at O. If $\angle BOC = 90^{\circ}$ and $\angle BDC = 50^{\circ}$, find $\angle OAB$.

20. Write the coordinates of the point lying on x-axis and with x-coordinate4.

<u>SECTIO</u>N – B

Questions 21 to 26 carry 2 marks each

- **21.** Show that 1.2727... can be expressed in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
- 22. Find the solution of the linear equation x + 2y = 8 which represents a point on (i) x-axis (ii) y- axis

OR

OR

Find the value of a and b, if the line 6bx + ay = 24 passes through (2, 0) and (0, 2).

- 23. The angles of quadrilateral are in the ratio 3 : 5 : 9 : 13. Find all the angles of the quadrilateral.
- **24.** \triangle ABC is right angled in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

25. In the below figure, if AB || CD, \angle APQ = 50° and \angle PRD = 127°, find x and y.

In the below figure, AB, CD and EF are three lines concurrent at O. Find the value of y.

26. If x - 2 is a factor of $x^3 - 3x + 5a$ then find the value of a.

$\underline{SECTION} - C$

Questions 27 to 34 carry 3 marks each

- **27.** ABCD is a parallelogram in which *P* and *Q* are midpoints of opposite sides of AB and CD. (see figure). If AQ intersects DP at S and BQ intersects at R, show that: $D = \frac{Q}{Q} = \frac{Q}{Q}$
 - (i) APCQ is a parallelogram
 - (ii) DPBQ is a parallelogram
 - (iii) PSQR is a parallelogram

In the below figure, P is the mid-point of side BC of a parallelogram ABCD such that \angle BAP = \angle DAP. Prove that AD = 2CD.

OR

28. Find the value of a and b in $\frac{3+\sqrt{7}}{3-\sqrt{7}} = a + b\sqrt{7}$

- **29.** Factorise: $x^3 23x^2 + 142x 120$
- **30.** In the fig, if PQ || ST, \angle PQR = 110⁰ and \angle RST = 130⁰ \leftarrow then find the value of \angle QRS.

31. Solve the equation 2x + 11 = 0, and represent the solution(s) on (i) the number line (ii) the Cartesian plane OR

Find the value of a, if the line 3y = ax + 7, will pass through: (i) (3, 4), (ii) (1, 2), (iii) (2, -3)

- **32.** Draw the graphs of the equations 3x 2y = 4. Find the coordinates of the point where the line intersects the x-axis and y-axis.
- **33.** In which quadrant or on which axis do each of the points (-2, 4), (3, -1), (-1, 0), (1, 2) and (-3, -5) lie?
- **34.** AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the adjoining figure). Show that $\angle A > \angle C$ and $\angle B > \angle D$.

<u>SECTIO</u>N – D

Questions 35 to 40 carry 4 marks each.

- **35.** Simplify $\frac{4+\sqrt{5}}{4-\sqrt{5}} + \frac{4-\sqrt{5}}{4+\sqrt{5}}$ by rationalizing the denominator.
- 36. Prove that the exterior angle of any triangle is equal to the sum of its interior opposite angles.
- 37. P, Q, R and S are respectively the mid-points of the sides AB, BC, CD and DA of a
- quadrilateral ABCD such that AC \perp BD. Prove that PQRS is a rectangle.
- **38.** The polynomial $f(x) = x^4 2x^3 + 3x^2 ax + b$ when divided by (x 1) and (x + 1) leaves remainder 5 and 9 respectively. Find the values of a and b.

Factorise each of the following: (i) $27y^3 + 125z^3$ (ii) $64m^3 - 343n^3$

- **39.** Points A (5, 3), B (-2, 3) and D (5, -4) are three vertices of a square ABCD. Plot these points on a graph paper and hence find the coordinates of the vertex C.
- 40. In the below figure, m and n are two plane mirrors perpendicular to each other. Show that incident ray CA is parallel to reflected ray BD.

ъ