KENDRIYA VIDYALAYA VIJAYAPURA

SAMPLE PAPER FOR HALF YEARLY EXAM (2019-20)

SUBJECT:MATHEMATICS
 CLASS:IX
 MAX. MARKS :80

(i). All questions are compulsory.
(ii). This question paper contains 40 questions divided into four Sections A, B, C andD.
(iii). Section A comprises of 20 questions of $\mathbf{1}$ mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of $\mathbf{3}$ marks each and Section D comprises of 6 questions of $\mathbf{4}$ markseach.
(iv). There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each, two questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the alternatives in all suchquestions.
(v). Use of Calculators is notpermitted

SECTION - A

Questions 1 to 20 carry 1 mark each.

1. Three angles of aquadrilateral are $75^{\circ}, 90^{\circ}$ and 75°. The fourth angle is \ldots
(a) 90°
(b) 95^{0}
(c) 105^{0}
(d) 120^{0}
2. In a triangle ABC , if $\angle \mathrm{A}+\angle \mathrm{B}=65^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{C}=140^{\circ}$, then the measure of $\angle \mathrm{B}$ is
(a) 40^{0}
(b) 25^{0}
(c) 115^{0}
(d) 60^{0}
3. Two lines PQ and RS intersect at O . If $\angle \mathrm{POR}=50^{\circ}$, then value of $\angle \mathrm{ROQ}$ is
(a) 120°
(b) 130^{0}
(c) 90^{0}
(d) 150^{0}

4. Two adjacent angles on a straight line are in the ratio $5: 4$. then the measure of each one of these angles are
(a) 100° and 80°
(b) 75° and 105^{0}
(c) 90° and 90°
(d) 60^{0} and 120°
5. If $(2,0)$ is a solution of the linear equation $2 x+3 y=k$, then the value of k is
(a) 4
(b) 6
(c) 5
(d) 2
6. The value of $125^{-\frac{1}{3}}$ is
(a) $\frac{1}{5}$
(b) $\frac{1}{25}$
(c) $\frac{1}{15}$
(d) $\frac{1}{125}$
7. The zero of $p(x)=9 x+4$ is:
(a) $\frac{4}{9}$
(b) $-\frac{4}{9}$
(c) $\frac{9}{4}$
(d) $-\frac{9}{4}$
8. If $x+2$ is a factor of $x^{3}+2 a x^{2}+a x-1$ then the value of a is
(a) $\frac{2}{3}$
(b) $\frac{3}{5}$
(c) $\frac{3}{2}$
(d) $\frac{1}{2}$
9. The coordinates of the point lying on the negative side of x-axis at a distance of 5 units from origin are \qquad
(a) $(0,5)$
(b) $(0,-5)$
(c) $(-5,0)$
(d) $(5,0)$
10. The distance of the $(4,-3)$ from x - axisis
(a) 3units
(b)-3units
(c)4 units
(d) 5units
11. Rationalise the denominator of $\frac{1}{3-\sqrt{2}}$
(a) $3+\sqrt{2}$
(b) $\frac{3+\sqrt{2}}{7}$
(c) $\frac{3-\sqrt{2}}{7}$
(d) $3-\sqrt{2}$
12. The value of $(81)^{0.16} X(81)^{0.09}$
(a) 3
(b) 5
(c) 4
(d) 2
13. The value of k, if $x=2, y=1$ is a solution of the equation $2 x+3 y=k$.
(a) 3
(b) 7
(c) 4
(d) 9
14. Express $2 x=5 y$ in the form $a x+b y+c=0$.
(a) $2 x-5 y=0$
(b) $2 x+5 y=0$
(c) $2 x-5 y+0=0$
(d) $2 x+5 y+0=0$
15. One of the angles of a triangle is 50° and the other two angles are equal. Find the measure of each of the equalangles.
(a) $75^{0}, 75^{0}$
(b) $70^{\circ}, 70^{0}$
(c) $65^{0}, 65^{0}$
(d) $60^{\circ}, 60^{\circ}$
16. If $x+6$ isa factor of $p(x)=x^{3}+3 x^{2}+4 x+k$, find the value of k.
(a) 24
(b) -24
(c) 84
(d) -84
17. In the given figure, $\mathrm{p} \| \mathrm{q}$. The value of x is \qquad
(a) 65
(b) 75
(c) 55
(d) 60
18. Without actually calculating the cubes, find the value of $(-12)^{3}+(7)^{3}+(5)^{3}$.
(a) 420
(b) -420
(c) 320
(d) -320
19. Diagonals AC and BD of parallelogram ABCD intersect at O . If $\angle \mathrm{BOC}=90^{\circ}$ and $\angle \mathrm{BDC}=50^{\circ}$, find $\angle \mathrm{OAB}$.
20. Write the coordinates of the point lying on x -axis and with x -coordinate 4 .

SECTION - B

Questions 21 to 26 carry 2 marks each

21. Show that $1.2727 \ldots$ can be expressed in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$.
22. Find the solution of the linear equation $x+2 y=8$ which represents a point on (i) x-axis
(ii) y - axis

OR

Find the value of a and b, if the line $6 b x+a y=24$ passes through $(2,0)$ and $(0,2)$.
23. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.
24. $\triangle \mathrm{ABC}$ is right angled in which $\angle \mathrm{A}=90^{\circ}$ and $\mathrm{AB}=\mathrm{AC}$. Find $\angle \mathrm{B}$ and $\angle \mathrm{C}$.
25. In the below figure, if $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$ and $\angle \mathrm{PRD}=127^{\circ}$, find x and y.

OR
In the below figure, AB, CD and EF are three lines concurrent at O . Find the value of y .

26. If $x-2$ is a factor of $x^{3}-3 x+5 a$ then find the value of a.

SECTION - C

Questions 27 to 34 carry $\mathbf{3}$ marks each

27. ABCD is a parallelogram in which P and Q are midpoints of opposite sides of AB and CD . (see figure). If $A Q$ intersects $D P$ at S and $B Q$ intersects at R, show that:
(i) APCQ is a parallelogram
(ii) DPBQ is a parallelogram
(iii) PSQR is a parallelogram

OR

In the below figure, P is the mid-point of side BC of a parallelogram ABCD such that $\angle \mathrm{BAP}=$ $\angle \mathrm{DAP}$. Prove that $\mathrm{AD}=2 \mathrm{CD}$.

28. Find the value of a and b in $\frac{3+\sqrt{7}}{3-\sqrt{7}}=a+b \sqrt{7}$
29. Factorise: $x^{3}-23 x^{2}+142 x-120$
30. In the fig, if $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$ then find the value of $\angle \mathrm{QRS}$.

31. Solve the equation $2 x+11=0$, and represent the solution(s) on
(i) the number line
(ii) the Cartesian plane
OR

Find the value of a, if the line $3 y=a x+7$, will pass through: (i) $(3,4)$, (ii) $(1,2)$, (iii) $(2,-3)$
32. Draw the graphs of the equations $3 x-2 y=4$. Find the coordinates of the point where the line intersects the x -axis and y -axis.
33. In which quadrant or on which axis do each of the points $(-2,4),(3,-1)$, $(-1,0),(1,2)$ and $(-3,-5)$ lie?
34. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the adjoining figure). Show that $\angle \mathrm{A}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{D}$.

SECTION - D

Questions 35 to 40 carry 4 marks each.

35. Simplify $\frac{4+\sqrt{5}}{4-\sqrt{5}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}$ by rationalizing the denominator.
36. Prove that the exterior angle of any triangle is equal to the sum of its interior opposite angles.
37. P, Q, R and S are respectively the mid-points of the sides $A B, B C, C D$ and $D A$ of a quadrilateral ABCD such that $\mathrm{AC} \perp \mathrm{BD}$. Prove that PQRS is a rectangle.
38. The polynomial $f(x)=x^{4}-2 x^{3}+3 x^{2}-a x+b$ when divided by $(x-1)$ and $(x+1)$ leaves remainder 5 and 9 respectively. Find the values of a and b.

OR
Factorise each of the following: (i) $27 y^{3}+125 z^{3} \quad$ (ii) $64 m^{3}-343 n^{3}$
39. Points $A(5,3), B(-2,3)$ and $D(5,-4)$ are three vertices of a square $A B C D$. Plot these points on a graph paper and hence find the coordinates of the vertex C .
40. In the below figure, m and n are two plane mirrors perpendicular to each other. Show that incident ray CA is parallel to reflected ray BD.

