KENDRIYA VIDYALAYA VIJAYAPURA

SAMPLE PAPER FOR HALF YEARLY EXAM (2019-20)

SUBJECT:MATHEMATICS
 CLASS:IX
 MAX. MARKS :80

(i). All questions are compulsory.
(ii). This question paper contains 40 questions divided into four Sections A, B, C andD.
(iii). Section A comprises of 20 questions of $\mathbf{1}$ mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of $\mathbf{3}$ marks each and Section D comprises of 6 questions of $\mathbf{4}$ markseach.
(iv). There is no overall choice. However, an internal choice has been provided in two questions of 2 marks each, two questions of 3 marks each and two questions of 4 marks each. You have to attempt only one of the alternatives in all suchquestions.
(v). Use of Calculators is notpermitted

SECTION - A

Questions 1 to 20 carry 1 mark each.

1. The graph of the linear equation in two variables $y=m x$ is
(a) a line parallel to x - axis
(b) a line parallel to y - axis
(c) a line passing through the origin
(d) not a straight line
2. A linear equation in two variables has
(a) no solution
(b) only one solution
(c) only two solutions
(d) infinitely many solutions
3. Point $(5,0)$ lies on the:
(a) I quadrant
(b) II quadrant
(c) x - axis
(d) y - axis
4. On rationalising the denominator of $\frac{1}{3-\sqrt{2}}$ we obtain
(a) $3+\sqrt{2}$
(b) $\frac{3+\sqrt{2}}{7}$
(c) $\frac{3-\sqrt{2}}{7}$
(d) $3-\sqrt{2}$
5. The value of $(\sqrt{5}+\sqrt{2})^{2}$ is:
(a) $7+2 \sqrt{5}$
(b) $1+5 \sqrt{2}$
(c) $7+2 \sqrt{10}$
(d) $7-2 \sqrt{10}$
6. On dividing $x^{3}+3 x^{2}+3 x+1$ by x we get remainder $\ldots .$.
(a) -1
(b) 1
(c) 0
(d) 2
7. ABCD is a rhombus such that $\angle A C B=40^{\circ}$, then $\angle \mathrm{ADB}=$?
(a) 45°
(b) 50°
(c) 45^{0}
(d) 60^{0}
8. In a right angles triangle
$\ldots \ldots \ldots \ldots \ldots$ is the longest side.
(a) hypotenuse
(b) perpendicular
(c) base
(d) none of these
9. The angle which is equal to its complement is
(a) 60°
(b) 30°
(c) 40°
(d) 72^{0}
10. If $x+2$ is a factor of $x^{3}+a x^{2}+a x-1$ then the value of a is \ldots.
(a) $\frac{2}{3}$
(b) $\frac{3}{5}$
(c) $\frac{3}{2}$
(d) $\frac{1}{2}$
11. The coordinates of the point lying on y-axis with coordinate -3 is
(a) $(-3,0)$
(b) $(3,0)$
(c) $(0,-3)$
(d) $(0,3)$
12. If -1 is the zero of the polynomial $p(x)=a x^{3}-x^{2}+x+4$, then find the value of a
13. Write an irrational number between $\sqrt{2}$ and $\sqrt{3}$.
14. Factorise: $12 x^{2}-7 x+1$
15. Simplify: $(256)^{\frac{5}{8}}$
16. In $\triangle \mathrm{ABC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$ and $\mathrm{CA}=7 \mathrm{~cm}$. If D and E are respectively the mid-points of $A B$ and $B C$, determine the length of $D E$.
17. Can all the angles of a quadrilateral be acute angles? Give reason for your answer.
18. The angles of triangle are $(x+10)^{0},(2 x-30)^{0}$ and x^{0}. Find the value of x.
19. At what point the graph of the linear equation $x+y=5$ cuts the x -axis?
20. Write the linear equation such that each point on its graph has an ordinate 3 times its abscissa.

SECTION - B

Questions 21 to 26 carry 2 marks each

21. One angle of a quadrilateral is of 108^{0} and the remaining three angles are equal. Find each of the three equal angles.
22. In the below figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

23. At what point does the graph of the linear equation $x+y=5$ meet a line which is parallel to the y-axis, at a distance 2 units from the origin and in the positive direction of x-axis.

OR

Write $3 x+2 y=18$ in the form of $y=m x+c$. Find the value of m and c. Is $(4,3)$ lies on this linear equation?
24. Without actually calculating the cubes, find the value of $(28)^{3}+(-15)^{3}+(-13)^{3}$
25. Simplify $\frac{5-2 \sqrt{3}}{5+2 \sqrt{3}}$ by rationalizing the denominator.

OR

Simplify $8 \sqrt{242}-5 \sqrt{50}+3 \sqrt{98}$
26. In the adjoining figure find the value of x.

SECTION - C

Questions 27 to 34 carry 3 marks each

27. Plot the following points and write the name of the figure thus obtained : $\mathrm{P}(-3,2), \mathrm{Q}(-7,-3), \mathrm{R}$ $(6,-3), S(2,2)$.
28. Show that the bisectors of angles of a parallelogram form a rectangle.
29. Solve the equation $2 \mathrm{y}+9=0$, and represent the solution(s) on (i) the number line,(ii) the Cartesian plane.
30. In the below figure, if $\mathrm{QT} \perp \mathrm{PR}, \angle \mathrm{TQR}=40^{\circ}$ and $\angle \mathrm{SPR}=30^{\circ}$, find x and y.

OR
In the above right sided figure, PQ and RS are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along CD . Prove that $\mathrm{AB} \| \mathrm{CD}$.
31. If $x+y=12$ and $x y=27$, find the value of $x^{3}+y^{3}$.
32. Show that 1.23535353 . \qquad can be expressed in the form of ${ }^{p}$, where p and q are integers and q

$$
q \neq 0 .
$$

33. The taxi fare in a city is as follows: For the first kilometre, the fare is Rs 8 and for the subsequent distance it is Rs 5 per km . Taking the distance covered as $x \mathrm{~km}$ and total fare as Rs y, write a linear equation for this information, and draw its graph.
34. $A D$ is an altitude of an isosceles triangle $A B C$ in which $A B=A C$. Show that (i) $A D$ bisects $B C$ (ii) AD bisects $\angle \mathrm{A}$.

OR

Line-segment $A B$ is parallel to another line-segment $C D . O$ is the mid-point of $A D$ (see the below figure). Show that (i) $\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$ (ii) O is also the mid-point of BC .

SECTION - D
 Questions 35 to 40 carry 4 marks each.

35. Prove that the sum of any two sides of a triangle is greater than twice the median drawn to the third side.
36. If polynomials $a x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+a$ leaves the same remainder when each is divided by $x-4$, find the value of a.

OR
Verify: (i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ (ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
37. Simplify $\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+2}+\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ by rationalizing the denominator.
38. Prove that "The line segment joining the mid-points of two sides of a triangle is parallel to the third side and half of it."

OR

Show that the quadrilateral formed by joining the mid-points the sides of a rhombus, taken in order, form a rectangle.
39. Three vertices of a rectangle are $(4,2),(-3,2)$ and $(-3,7)$. Plot these points and find the coordinates of the fourth vertex.
40. In the above right sided figure, the side QR of . PQR is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

