## Number Systems

## Introduction to Number Systems

## Numbers

Number: Arithmetical value representing a particular quantity.
The various types of numbers are Natural Numbers, Whole Numbers, Integers, Rational Numbers, Irrational Numbers, Real Numbers etc.

## Natural Numbers

Natural numbers( N ) are positive numbers i.e. 1, 2, 3 ..and so on.

## Whole Numbers

Whole numbers (W) are $0,1,2$,..and so on. Whole numbers are all Natural Numbers including ' 0 '.
Whole numbers do not include any fractions, negative numbers or decimals.

## Integers

Integers are just like whole numbers, but they also include negative numbers. They are denoted by $\mathbf{Z}$.

Examples: -3, -2, -1, 0, 1, 2

## Rational Numbers

A number ' $r$ ' is called a rational number if it can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

## Irrational Numbers

Any number that cannot be expressed in the form of $\frac{p}{q}$, where p and q are integers and $q \neq 0$ , is an irrational number.
Examples: $\sqrt{2}, 1.010024563 \ldots, e, \pi$

## Real Numbers

Any number which can be represented on the number line is a Real Number(R). It includes both rational and irrational numbers.
Every point on the number line represents a unique real number.

## Irrational Numbers

## Representation of Irrational numbers on the Number line

Let $\sqrt{x}$ be an irrational number. To represent it on the number line we will follow the following steps:

- Take any point A. Draw a line $\mathrm{AB}=x$ units.
- Extend AB to point C such that $\mathrm{BC}=1$ unit.
- Find out the mid-point of AC and name it 'O'. With 'O' as the center draw a semi-circle with radius OC.
- Draw a straight line from B which is perpendicular to $A C$, such that it intersects the semi-circle at point $D$.

Length of $B D=\sqrt{x}$.


Constructions to Find root of $x$.

- With BD as the radius and origin as the center, cut the positive side of the number line to get $\sqrt{x}$.


## Identities for Irrational Numbers

## Operations on Rational and Irrational numbers

Arithmetic operations between:

- rational and irrational will give an irrational number.
- irrational and irrational will give a rational or irrational number.

Example : $2 \times \sqrt{3}=2 \sqrt{3}$ i.e. irrational.
$\sqrt{3} \times \sqrt{3}=3$ which is rational.

## Identities for irrational numbers

If a and b are real numbers then:

- $\sqrt{a b}=\sqrt{a} \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
- ( $\backslash$ sqrt a + sqrt b) ( $\backslash$ sqrt a - \sqrt b) $=\mathrm{a}-\mathrm{b} \backslash)$
- $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$
- $(\sqrt{a}+\sqrt{b})(\sqrt{c}+\sqrt{d})=\sqrt{a c}+\sqrt{a d}+\sqrt{b c}+\sqrt{b d}$
- $(\sqrt{a}+\sqrt{b})(\sqrt{c}-\sqrt{d})=\sqrt{a c}-\sqrt{a d}+\sqrt{b c}-\sqrt{b d}$
- $(\sqrt{a}+\sqrt{b})^{2}=a+2 \sqrt{a b}+b$


## Rationalisation

Rationalisation is converting an irrational number into a rational number.
Suppose if we have to rationalise $\frac{1}{\sqrt{a}}$.
$\frac{1}{\sqrt{a}} \times \frac{1}{\sqrt{a}}=\frac{1}{a}$
Rationalisation of $\frac{1}{\sqrt{a}+b}$ :
$\frac{1}{\sqrt{a}+b} \times \frac{1}{\sqrt{a}-b}=\frac{1}{a-b^{2}}$

## Laws of Exponents for Real Numbers

If $\mathrm{a}, \mathrm{b}, \mathrm{m}$ and n are real numbers then:

- $a^{m} \times a^{n}=a^{m+n}$
- $\left(a^{m}\right)^{n}=a^{m n}$
- $\frac{a^{m}}{a^{n}}=a^{m-n}$
- $a^{m} b^{m}=(a b)^{m}$

Here, $a$ and $b$ are the bases and $m$ and $n$ are exponents.

## Exponential representation for irrational numbers

If $\mathrm{a}>0$ and n is a positive integer, then:
$\sqrt[n]{a}=a^{\frac{1}{n}}$
Let $\mathrm{a}>0$ be a real number and p and q be rational numbers, then:

- $a^{p} \times a^{q}=a^{p+q}$
- $\left(a^{p}\right)^{q}=a^{p q}$
- $\frac{a^{p}}{a^{q}}=a^{p-q}$
- $a^{p} b^{p}=(a b)^{p}$


## Decimal Representation of Rational Numbers

## Decimal expansion of Rational and Irrational Numbers

The decimal expansion of a rational number is either terminating or non- terminating and recurring.
Example: $\frac{1}{2}=0.5, \frac{1}{3}=3.33$..
The decimal expansion of an irrational number is non terminating and non-recurring.
Examples:
$\sqrt{2}=1.41421356$..

## Expressing Decimals as rational numbers

## Case 1 - Terminating Decimals

Example - 0.625
Let $x=0.625$
If the number of digits after the decimal point is $y$, then multiply and divide the number by $10^{y}$.
So,$x=0.625 \times \frac{1000}{1000}=\frac{625}{1000}$
Then, reduce the obtained fraction to its simplest form.
Hence, $x=\frac{5}{8}$

## Case 2: Recurring Decimals

If the number is non-terminating and recurring, then we will follow the following steps to convert it into a rational number:
Example - 1.042
Step 1. Let $x=1.0 \overline{42}$
Step 2. Multiply the first equation with $10^{y}$, where $y$ is the number of digits that are recurring.
Thus, $100 x=104.2 \overline{4} \overline{2}$
Steps 3. Subtract equation 1 from equation 2.
On subtracting equation 1 from 2 , we get
$99 x=103.2$
$x=\frac{103.2}{99}=\frac{1032}{990}$
Which is the required rational number.
Reduce the obtained rational number to its simplest form
Thus, $x=\frac{172}{165}$

